Parasite forecasts continue to show high risk levels for blow fly strike, parasitic gastro-enteritis (gutworm) and lung worm. These conditions all pose both health and welfare problems and robust control plans should be in place to reduce the risk to livestock.

We have already seen numerous cases of fly strike and confirmed cases of lungworm in grazing cattle. Regular faecal egg counts are an effective way of monitoring the worm burden in stock to establish if treatment is required. Faecal egg counts after treatment also help identify resistance issues. Just last week we also diagnosed at least two herd breakdowns with IBR. In both cases adult milking cows were suffering from typical upper respiratory tract symptoms resulting in fever, loss of appetite and loss of yield.

Gutworm treatment at calving can help to overcome the ‘energy gap’ experienced by newly calved cows and ensure that they make the best of grass. The energy gap is the difference between the energy required for milk production and that produced from feed intake; it occurs during the first 6-10 weeks after calving. If appetite is reduced at this critical time and feed intake is compromised, the energy gap will increase, causing the cow to milk off her back and lose significant body condition. If this continues for a prolonged period, both the cow’s milk production and her fertility can be significantly affected. Adult cows treated with Eprinex® have been shown to graze for almost an hour more than untreated cows. Worming cows can therefore directly improve appetite and help to reduce the energy gap. Over the last decade, numerous studies involving over 8,000 cows and heifers have clearly demonstrated that removing gutworms in the milking cow through worming with Eprinex® can improve milk yield. Indeed the response to treatment in terms of increased milk yield can be as much as 2.2 litres per cow per day. A smaller number of studies have shown that fertility can also be improved by worming, with treated animals demonstrating a 13 day shorter calving to conception interval and a 20% higher conception rate at first service.

On the basis of these additional returns farmers not currently worming their cows are advised to do so, to remove damaging gutworms, improve performance and help herds deliver more. Eprinex® is an ideal treatment at this time as it has a zero milk withhold, providing the ability to treat cows at any stage of lactation without the worry of lost milk sales. It also treats lungworm and is a proven product with more than a decade of successful use by dairy farmers.
Heat stress in Cheshire?

Heat stress isn’t just a problem in warmer places like California or Saudi Arabia but it can also be a problem here in the UK. Dairy cows need to maintain a constant body temperature of 38.5°C +/- 0.5°C and their ability to maintain this temperature is dependent on environmental factors including temperature, air speed and relative humidity.

It is best if cows do not have to use a lot of energy to maintain their body temperature. At higher environmental temperatures cows have two main ways of maintaining their body temperature,

• Increasing heat loss - increasing blood flow to the skin, panting, drooling etc.
• Reducing heat production - by reducing activity and changing their feeding patterns.

As most of the heat produced by a cow comes from the rumen she will drop her intake (by 10-30%) and be selective in what she will eat (less long fibre) as she starts to feel the heat. There will also be a reduction in rumen activity and a noticeable drop in cudding. Ambient temperatures above 25°C can reduce milk yield by as much as 20%, fertility also suffers due to an increase in embryo loss and reduced bulling activity and heat stress has also been shown to increase the risk of clinical mastitis. Signs to look for in period of warm weather include

• Lethargy/ inactivity (cows not people!)
• Increased respiratory rate and/or panting.
• Cows move closer together and stand in tightly packed groups.
• Fresh air seeking behaviour.

As relative humidity (RH) increases, the temperature at which a dairy cow exhibits heat stress falls. This is particularly important in the UK climate as the high RH means we see moderate heat stress at relatively low temperatures (see table).

Reducing the impact of heat stress . . .

• Increase energy density of the ration using high quality forages - digested faster and produce less heat and more concentrates and/or by-products but ensure the ration is balanced properly to avoid digestive disorders such as acidosis.
• Feeding times - feed more during the cooler nights.
• Water access - water intake can increase by 10-20%, especially in high-yielders, ensure a good supply of clean water and lots of access.
• Practical methods of improving the environment assess the airflow within the building can be easily performed by using a smoke bomb to see if physical improvements can be made before embarking on installing mechanical ventilation. Don’t forget the collecting yard as this is the area with the highest density of cows which makes it a real hot spot.

WVH2902 2PP FARM NEWSLETTER JUNE 17.indd 2
31/05/2017 14:42